Посмотрим на кривую обучения, приведённую в статье, для игры Breakout - это та, где нужно отбивать красный "кубик" доской, которую вы перемещаете в нижней части экрана.
Одна эпоха по оси времени - это 50000 апдейтов весов, то есть нужно больше миллиона апдейтов, чтобы выучить элементарную стратегию - поддерживать доску на одном уровне с мячом.
В режиме Supervised learning при размеченном датасете мы бы могли обучить такую нейросеть гораздо быстрее и используя гораздо меньше данных - всего для обучения в каждой игре было сыграно по 10 миллионов кадров. Но в рамках поставленной задачи предполагается, что такого датасета у нас нет, и нейросеть учится сама методом проб и ошибок, что и делает процесс обучения чудовищно жадным в плане данных.
Отмечу, что революции в data-efficiency с тех пор не произошло, и все следующие годы количество данных для обучения только росло. Но про те безумные числа мы поговорим в другой раз.
Конечно, это не приговор - всеголишь нужно научиться переносить знания между доменами и средами. А это уже совсем другая история.
Посмотрим на кривую обучения, приведённую в статье, для игры Breakout - это та, где нужно отбивать красный "кубик" доской, которую вы перемещаете в нижней части экрана.
Одна эпоха по оси времени - это 50000 апдейтов весов, то есть нужно больше миллиона апдейтов, чтобы выучить элементарную стратегию - поддерживать доску на одном уровне с мячом.
В режиме Supervised learning при размеченном датасете мы бы могли обучить такую нейросеть гораздо быстрее и используя гораздо меньше данных - всего для обучения в каждой игре было сыграно по 10 миллионов кадров. Но в рамках поставленной задачи предполагается, что такого датасета у нас нет, и нейросеть учится сама методом проб и ошибок, что и делает процесс обучения чудовищно жадным в плане данных.
Отмечу, что революции в data-efficiency с тех пор не произошло, и все следующие годы количество данных для обучения только росло. Но про те безумные числа мы поговорим в другой раз.
Конечно, это не приговор - всеголишь нужно научиться переносить знания между доменами и средами. А это уже совсем другая история.
That growth environment will include rising inflation and interest rates. Those upward shifts naturally accompany healthy growth periods as the demand for resources, products and services rise. Importantly, the Federal Reserve has laid out the rationale for not interfering with that natural growth transition.It's not exactly a fad, but there is a widespread willingness to pay up for a growth story. Classic fundamental analysis takes a back seat. Even negative earnings are ignored. In fact, positive earnings seem to be a limiting measure, producing the question, "Is that all you've got?" The preference is a vision of untold riches when the exciting story plays out as expected.
Traders also expressed uncertainty about the situation with China Evergrande, as the indebted property company has not provided clarification about a key interest payment.In economic news, the Commerce Department reported an unexpected increase in U.S. new home sales in August.Crude oil prices climbed Friday and front-month WTI oil futures contracts saw gains for a fifth straight week amid tighter supplies. West Texas Intermediate Crude oil futures for November rose $0.68 or 0.9 percent at 73.98 a barrel. WTI Crude futures gained 2.8 percent for the week.